If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+8w-22=0
a = 6; b = 8; c = -22;
Δ = b2-4ac
Δ = 82-4·6·(-22)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{37}}{2*6}=\frac{-8-4\sqrt{37}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{37}}{2*6}=\frac{-8+4\sqrt{37}}{12} $
| 13+2m=16 | | 1/9r=-10 | | -7/8x=-1.56 | | 6.3=7.5-0.4x | | 7+2m=10 | | 8x-6=6x-48 | | 6(2-c)=10c-3c-2= | | 2(x-4)+7(×+2=) | | 3/17=x/43 | | -5n-1=17+3n | | 2m+8=13 | | 2(a+3)-3(+4=-10 | | 1/6d+2/3d=1/4(d-2) | | 20(v+1)-4v=4(4v+3)-20 | | 1/5y+11=3−3/5y | | 2−2x=3x+17 | | 3(n-7)-(4-6n)=8n | | 3x=-2+35 | | 167*a+19*a+16=1132 | | 13=h/3+4 | | 8/10x-7/10x=2 | | -1/2(x+8)=3x+17 | | 16x^2-85x+50=0 | | 2c-3(2c+7)=3 | | 6×+5=-19-6x | | 4y+7-y=1+2y-7 | | x^2-12x+2=10 | | 2(x+3)=6(2x-3) | | 6y-17=-9+8y | | 9.8=5/x | | 6x-7(-5x+20)=65 | | 0.15-0.2=0.3x+0.9 |